Семинарское занятие 8 (MATLAB)
Тема: SVM в MATLAB — линейный и RBF, подбор гиперпараметров (C и γ), метрики качества.
Цель занятия
1) Обучить SVM с линейным ядром и SVM с RBF-ядром.
2) Подобрать гиперпараметры RBF-SVM: C (BoxConstraint) и γ (через KernelScale).
3) Оценить качество по метрикам: confusion matrix, accuracy, precision, recall, F1, ROC-AUC и PR/AP (для бинарного случая).
4) Сделать краткий анализ ошибок и вывод (какая модель лучше и почему).
Датасет
Рекомендуется бинарная классификация (2 класса), чтобы строить ROC/PR:
• Вариант A: встроенный cancer_dataset (если доступен).
• Вариант B: свой CSV/Excel с меткой 0/1 (например OK/Defect).

Важно: стандартизация признаков делается по TRAIN (без утечки данных).
Задание
1. Загрузить X (N×d) и y (0/1). Проверить баланс классов.
2. Сделать разбиение Train/Val/Test = 60/20/20 со стратификацией и фиксированным seed.
3. Стандартизовать признаки (z-score) по train и применить те же параметры к val/test.
4. Обучить Linear SVM и оценить на test (confusion matrix + метрики).
5. Обучить RBF SVM (baseline) и оценить на test.
6. Сделать grid search по (C, KernelScale) с 5-fold CV на train, выбрать лучшую пару.
7. Обучить “tuned” RBF SVM на train и оценить на test: ROC-AUC и PR/AP, плюс precision/recall/F1.
8. Сравнить Linear vs RBF (tuned). Написать вывод 5–8 строк и указать, какие ошибки доминируют (FP или FN).
Что сдавать
1) Скрипт MATLAB: Seminar7_SVM_Linear_RBF_Tuning_Metrics.m
2) Отчёт 1–2 страницы: таблица метрик, confusion matrix, ROC и PR кривые, тепловая карта CV-loss по сетке, вывод.
3) (Опционально) файл .mat с лучшей моделью и параметрами.
Критерии оценивания (макс. 15 баллов)
• Split + стандартизация без утечки — 4 б.
• Linear SVM (обучение + оценка) — 2 б.
• RBF SVM baseline (обучение + оценка) — 2 б.
• Grid search (C, KernelScale) + выбор лучших — 4 б.
• Метрики (Acc/Prec/Rec/F1 + ROC/PR) + вывод — 3 б.
Бонус +2 б: сравнить разные сетки или использовать OptimizeHyperparameters для SVM.
Шаблон кода MATLAB (копируйте и запускайте)
%% Seminar 7: SVM (Linear/RBF) + Hyperparameter Tuning + Metrics (ROC/PR)
rng(42);

%% 1) Data
% Option A: built-in cancer_dataset (if available)
try
    load cancer_dataset
    X = X';               % 699x9
    y = double(T(2,:)');  % 0/1
catch
    % Option B: your CSV
    % D = readtable("data.csv");
    % y = double(categorical(D.Label) == categorical("Defect")); % example mapping
    % X = table2array(D(:, setdiff(D.Properties.VariableNames, {'Label'})));
    error("No built-in dataset. Please connect your CSV in the catch block.");
end

yCat = categorical(y);
fprintf('Class balance: y=0: %d | y=1: %d\n', sum(y==0), sum(y==1));

%% 2) Train/Val/Test split 60/20/20 (stratified)
cv1 = cvpartition(yCat,'Holdout',0.4);   % 60% train, 40% temp
idxTr  = training(cv1);
idxTmp = test(cv1);

Xtr = X(idxTr,:);   ytr = y(idxTr);   ytrCat = yCat(idxTr);
Xtmp = X(idxTmp,:); ytmp = y(idxTmp); ytmpCat = yCat(idxTmp);

cv2 = cvpartition(ytmpCat,'Holdout',0.5); % 20% val, 20% test
idxVal = training(cv2);
idxTe  = test(cv2);

Xval = Xtmp(idxVal,:); yval = ytmp(idxVal); yvalCat = ytmpCat(idxVal);
Xte  = Xtmp(idxTe,:);  yte  = ytmp(idxTe);  yteCat  = ytmpCat(idxTe);

%% 3) Standardization by TRAIN only (no leakage)
mu = mean(Xtr,1);
sg = std(Xtr,0,1); sg(sg==0) = 1;

XtrN  = (Xtr  - mu) ./ sg;
XvalN = (Xval - mu) ./ sg;
XteN  = (Xte  - mu) ./ sg;

%% 4) Linear SVM
mdlLin = fitcsvm(XtrN, ytrCat, 'KernelFunction','linear', 'BoxConstraint',1, 'Standardize',false);
mdlLin = fitPosterior(mdlLin);  % Platt scaling for ROC/PR

[yhatLin, sLin] = predict(mdlLin, XteN);
pLin = getPosScore(mdlLin, sLin);

%% 5) RBF SVM (baseline)
mdlRBF0 = fitcsvm(XtrN, ytrCat, 'KernelFunction','rbf', 'BoxConstraint',1, 'KernelScale',1, 'Standardize',false);
mdlRBF0 = fitPosterior(mdlRBF0);
[yhatRBF0, sRBF0] = predict(mdlRBF0, XteN);
pRBF0 = getPosScore(mdlRBF0, sRBF0);

%% 6) Grid search (C, KernelScale) with 5-fold CV on TRAIN
Cgrid  = logspace(-2, 3, 7);      % C = 1e-2 ... 1e3
KSgrid = logspace(-2, 2, 6);      % KernelScale (gamma ≈ 1/(2*KS^2))

cvLoss = zeros(numel(Cgrid), numel(KSgrid));
for i = 1:numel(Cgrid)
    for j = 1:numel(KSgrid)
        mdl = fitcsvm(XtrN, ytrCat, 'KernelFunction','rbf', ...
            'BoxConstraint', Cgrid(i), 'KernelScale', KSgrid(j), 'Standardize', false);
        cvMdl = crossval(mdl, 'KFold', 5);
        cvLoss(i,j) = kfoldLoss(cvMdl);  % 0-1 loss
    end
end

[minLoss, idx] = min(cvLoss(:));
[iBest, jBest] = ind2sub(size(cvLoss), idx);
bestC  = Cgrid(iBest);
bestKS = KSgrid(jBest);

fprintf('Best by CV loss: C=%.3g | KernelScale=%.3g | CV loss=%.3f\n', bestC, bestKS, minLoss);

figure;
imagesc(log10(KSgrid), log10(Cgrid), cvLoss);
colorbar; xlabel('log10(KernelScale)'); ylabel('log10(C)');
title('Grid Search: 5-fold CV Loss (RBF SVM)');
set(gca,'YDir','normal');

%% 7) Train tuned RBF SVM and evaluate on TEST
mdlRBF = fitcsvm(XtrN, ytrCat, 'KernelFunction','rbf', ...
    'BoxConstraint', bestC, 'KernelScale', bestKS, 'Standardize', false);
mdlRBF = fitPosterior(mdlRBF);

[yhatRBF, sRBF] = predict(mdlRBF, XteN);
pRBF = getPosScore(mdlRBF, sRBF);

%% 8) Metrics: confusion matrix, Acc/Prec/Rec/F1 + ROC-AUC + PR/AP
fprintf('\n=== TEST METRICS ===\n');
reportAll("Linear SVM", yte, yteCat, yhatLin,  pLin);
reportAll("RBF SVM (baseline)", yte, yteCat, yhatRBF0, pRBF0);
reportAll("RBF SVM (tuned)", yte, yteCat, yhatRBF,  pRBF);

%% ===== Functions =====
function p = getPosScore(mdl, score)
% score: N x 2 after fitPosterior, choose column of positive class (=1)
posClass = categorical(1);
if size(score,2) == 2
    posIdx = find(mdl.ClassNames == posClass);
    p = score(:, posIdx);
else
    p = score(:);
end
end

function reportAll(name, yNum, yCat, yhatCat, pPos)
CM = confusionmat(yCat, yhatCat, 'Order', [categorical(0) categorical(1)]);
TN = CM(1,1); FP = CM(1,2); FN = CM(2,1); TP = CM(2,2);

acc  = (TP+TN)/max(sum(CM(:)),1);
prec = TP/max(TP+FP,1);
rec  = TP/max(TP+FN,1);
f1   = 2*prec*rec/max(prec+rec,1e-12);

[~,~,~,AUC] = perfcurve(yNum, pPos, 1);
[recall, precision, ~, AP] = perfcurve(yNum, pPos, 1, 'xCrit','reca', 'yCrit','prec');

fprintf('%s | Acc=%.3f Prec=%.3f Rec=%.3f F1=%.3f ROC-AUC=%.3f AP=%.3f\n', ...
    name, acc, prec, rec, f1, AUC, AP);

figure; confusionchart(yCat, yhatCat);
title([name ' : Confusion Matrix (Test)']);

figure; [Xroc,Yroc,~,~] = perfcurve(yNum, pPos, 1);
plot(Xroc,Yroc); grid on; xlabel('FPR'); ylabel('TPR');
title(sprintf('%s : ROC (AUC=%.3f)', name, AUC));

figure; plot(recall, precision); grid on; xlabel('Recall'); ylabel('Precision');
title(sprintf('%s : PR (AP≈%.3f)', name, AP));
end

Примечания
• В MATLAB для RBF напрямую не задают γ; вместо этого используют KernelScale. Связь: γ ≈ 1/(2·KernelScale²).
• Чем больше C и чем меньше KernelScale (то есть больше γ), тем “жёстче” граница и выше риск переобучения.
• Для несбалансированных данных ориентируйтесь на PR/AP и F1, а не только accuracy.
